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ARTICLE

Mapping Tumor-Suppressor Genes with Multipoint Statistics
from Copy-Number–Variation Data
Iuliana Ionita, Raoul-Sam Daruwala, and Bud Mishra

Array-based comparative genomic hybridization (arrayCGH) is a microarray-based comparative genomic hybridization
technique that has been used to compare tumor genomes with normal genomes, thus providing rapid genomic assays
of tumor genomes in terms of copy-number variations of those chromosomal segments that have been gained or lost.
When properly interpreted, these assays are likely to shed important light on genes and mechanisms involved in the
initiation and progression of cancer. Specifically, chromosomal segments, deleted in one or both copies of the diploid
genomes of a group of patients with cancer, point to locations of tumor-suppressor genes (TSGs) implicated in the cancer.
In this study, we focused on automatic methods for reliable detection of such genes and their locations, and we devised
an efficient statistical algorithm to map TSGs, using a novel multipoint statistical score function. The proposed algorithm
estimates the location of TSGs by analyzing segmental deletions (hemi- or homozygous) in the genomes of patients with
cancer and the spatial relation of the deleted segments to any specific genomic interval. The algorithm assigns, to an
interval of consecutive probes, a multipoint score that parsimoniously captures the underlying biology. It also computes
a P value for every putative TSG by using concepts from the theory of scan statistics. Furthermore, it can identify smaller
sets of predictive probes that can be used as biomarkers for diagnosis and therapeutics. We validated our method using
different simulated artificial data sets and one real data set, and we report encouraging results. We discuss how, with
suitable modifications to the underlying statistical model, this algorithm can be applied generally to a wider class of
problems (e.g., detection of oncogenes).
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The process of carcinogenesis imparts many genetic
changes to a cancer genome at many different scales: point
mutations, translocations, segmental duplications, and
deletions. Whereas most of these changes have no direct
impact on the cellular functions—and may not contribute
to the carcinogenesis in any obvious manner—few of
these chromosomal aberrations have a disproportionately
significant impact on the cell’s ability to initiate and main-
tain processes involved in tumor growth; namely, through
its ability to proliferate, escape senescence, achieve im-
mortality, and signal to neighboring cells. Two classes of
genes are critically involved in cancer development and
are discernible in terms of their copy-number variations
(CNVs): oncogenes that are activated or altered in func-
tion and tumor-suppressor genes (TSGs) that are deacti-
vated in cancer cells. Thus, the effect of oncogenes is via
gain-of-function mutations that lead to malignancy. For
instance, a segmental amplification can increase the ge-
nomic copy number of a region containing an oncogene,
thus leading to overexpression of the oncogene product.
The mutation is dominant; that is, only a mutated allele
is necessary for the cell to become malignant. TSGs affect
the cells via mutations (often involving segmental dele-
tions) that contribute to malignancy by loss of function
of both alleles of the gene. The “two-hit” hypothesis of
Knudson1 for tumorigenesis has been widely recognized
as an important model of such losses of function involved
in many cancers.

Whole-genome–scale data and their computational anal-
ysis can now lead to rapid discovery and characterization
of important genetic changes at significantly higher reso-
lution, thus providing a systems-level understanding of the
roles of oncogenes and TSGs in cancer development and
its molecular basis. As an example, whereas BRCA1 and
BRCA2 TSGs provide better understanding of familial breast
cancer and other TSGs, including PTEN and p53, do so for
sporadic breast cancer, we still lack a reasonably complete
picture, since many important components remain undis-
covered. Whole-genome analysis, now possible through ar-
ray-based comparative genomic hybridization (arrayCGH)
experiments, can remedy the situation by shedding light
on many more genes and their interrelationship.

In the current whole-genome analysis setup, microarray
techniques are being used successfully to measure fluctu-
ations in copy number for a large number of genomic
regions in one genome relative to a different but related
genome sample. For example, arrayCGH can map copy-
number changes at a large number of chromosomal lo-
cations in one genome with respect to a reference genome
and, from them, extrapolate to infer segments of the ge-
nome that have undergone the same degree of amplifica-
tions or deletions. For some references to and discussions
of algorithms that estimate these CNVs, see Daruwala et
al.2

In the present article, we examine how these CNV data
can be used for the purpose of identifying TSGs. The in-
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Figure 1. Prior score as a function of the length of the interval.
A priori, shorter intervals receive higher weight than larger intervals.

Figure 2. The tail probability for different numbers ofP(S � k)w

breakpoints k ( ) and different window sizes w. is the0 � k � 20 Sw

maximum number of breakpoints in a window of length w. The
total number of breakpoints in the region is .N p 50

tuitive basis of our approach can be easily stated, as fol-
lows. Suppose we have whole-genome CNV data for sev-
eral patients who suffer from the same specific class of
cancer, putatively caused by loss of function in both al-
leles of the same TSG. In that case, the loss-of-function
event may have many underlying causes; for instance, a
nonsynonymous point mutation in the exon, a mutation
in the regulatory region, a small insertion-deletion event
in the coding region, or a relatively large segmental dele-
tion event that affects one or many exons of the gene. In
each case, the phenotypic result will be similar, but the
whole-genome analysis will identify only segmental dele-
tion events that exhibit themselves through reduced copy-
number values for genomic intervals. For any such deleted
segment to effect a loss of function in the TSG, it must
overlap with the genomic interval corresponding to the
TSG. Even though events representing small, undetectable
mutations will go unnoticed, by accounting for the CNVs,
a suitable algorithm can infer the location of the TSG im-
plicated in the disease. Our approach exploits these to-
pological relationships among the genomic intervals and
works by enumerating all possible intervals in the genome
and then evaluating them with a score function that mea-
sures the likelihood of an interval being exactly the TSG.
The mathematical derivation and properties of this score
function appear in the appendix (online only).

The rest of the article is organized as follows. We first
present a formal description of the score function, which
we have only intuitively sketched so far (see the “Meth-
ods” section), and then show how this function is used in
evaluation of whether a region represents a TSG. Next, we
illustrate our method, using this score function and several
sets of simulated data, computed under a wide variety of
scenarios (see the “Results” section); we also assess the
power of the method by examining how accurately it dis-
covers the true location (which is known to the simulator)
of the TSG. Finally, we analyze and report the results from
an arrayCGH data set (using 100K Affy-chips), obtained
from several patients with lung cancer. We conclude with

a discussion of the strength and weakness of the proposed
method (see the “Discussion” section).

Methods

Our method for the identification of TSGs relies on a multipoint
score function, computed over whole-genome–analysis data for
a sufficiently large group of patients suffering from the same form
of cancer. In the following section, we present a systematic der-
ivation of this score function, starting with a few simple assump-
tions about the underlying biology and the data.

Definition of Relative Risk

For any interval I (represented as a set of consecutive probes), we
wish to quantify the strength of the association between deletions
in I and the disease by analyzing the genomic data for many
diseased individuals. For this purpose, we select a metric, the
relative risk (RR), as it compares and assigns a numerical value
to the risks of disease in two populations with respect to each
other: the first population comprises subjects whose genomes
contain a segmental deletion in the interval I, and the second
comprises subjects whose genomes have no such segmental de-
letion in I.

P(diseaseFI deleted)
RR p lnI deleted P(diseaseFI NOT deleted)

P(I deletedFdisease) P(I NOT deleted)
p ln #[ ]P(I NOT deletedFdisease) P(I deleted)

P(I deletedFdisease) P(I deleted)
p ln � � ln (1)[ ] { [ ]}P(I NOT deletedFdisease) P(I NOT deleted)

We caution the reader that, in an abuse of definition, we will
frequently use the shortened phrase “I deleted” to mean that “at
least a part of I is deleted.”
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Figure 3. Depiction of the simulation process described in the
text. A single precancerous cell (both copies of the TSG are non-
functional) starts multiplying indefinitely. Over time, the new pro-
genitor cells also incur other independent damage (i.e., deletions).
The tumor sample that we collected comprised different tumor
cells and some normal cells.

Table 1. Six Simulated Models

Model

Percentage of Sample

phomozygous phemizygous psporadic

1 100 0 0
2 50 50 0
3 0 100 0
4 50 0 50
5 25 25 50
6 0 50 50

NOTE.— represents the per-phomozygous

centage of samples in the data set with
homozygous deletions, is thephemizygous

percentage of samples with hemizy-
gous deletions, and is the pro-psporadic

portion of samples with no deletion in
the TSG under investigation (randomly
diseased).

The first term in equation (1) can be estimated from the tumor
samples available:

P(I deletedFdisease) nI deletedp , (2)
P(I NOT deletedFdisease) nI NOT deleted

where (or ) is simply the number of tumor sam-n nI deleted I NOT deleted

ples in which I is deleted (or not deleted).
The second part of equation (1),

P(I deleted)
� ln ,[ ]P(I NOT deleted)

incorporates prior information inherent in the statistical distri-
bution of deletions. For instance, we may note that if I is a small
interval, then and, hence,P(I deleted) K P(I NOT deleted)

P(I deleted)
� ln [ ]P(I NOT deleted)

is a large positive number. Similarly, if I is very large, then the
situation is reversed and

P(I deleted)
� ln [ ]P(I NOT deleted)

becomes a large negative number. Consequently, the prior infor-
mation, included in the distribution of random unrelated dele-
tions in the genome, is reflected through an advantage accrued
to small intervals; in other words, under the assumption that the
same strength of evidence exists in the data for different sizes,
preference is given to the smaller intervals.

To derive a computational procedure for this prior score, we
rely on a probabilistic model of how the genomic data may have
been generated. In this simplest parsimonious model, we assume
that, at any genomic location, a breakpoint may occur as a Pois-
son process at a rate of . At the places where any of thesem � 0
breakpoints start, a segmental deletion may occur, the length of
which is distributed as an exponential random variable with a
parameter . Note the following lemma.l � 0

Lemma 1.—Under the assumption of the generative process de-

scribed above, the probability that an interval (in theI p [a,b]
genome) is deleted can be expressed as

P([a,b] deleted)
�la �l(G�b)1�e 1�e

�m(b�a) �ma �m(G�b)p 1 � e e e , (3)2la 2l(G�b)

where represents the region of interest (e.g., a chromosome)[0,G]
and [a,b] is a specific genomic interval in this region. See the
appendix (online only) for proof of the lemma.

Using equations (2) and (3), we can now compute the score
function for an interval I. Parameters m and l, whichRRI deleted

appear in the score function, are assumed to have been estimated
from data by a procedure described in the next section.

In figure 1, we show how the additional prior score

P(I deleted)
� ln ,[ ]P(I NOT deleted)

computed using equation (3) in the previous lemma, varies as a
function of the length of the interval. All the parameters (m, l,
and G) are the same as those in the simulation examples in the
“Results” section. Figure 1 emphasizes the significantly higher
prior advantage given to intervals of smaller length.

Clearly, we expect the high-scoring intervals determined by this
method to be treated as candidates for TSGs. We still need to
define precisely how and how many of these intervals should be
selected and then evaluated for their statistical significance.

Estimating Parameters

In the preceding section, we defined a score for an interval I
( ), which depends on two extraneous parameters thatRRI deleted

describe a background genome-reorganization process. These two
parameters—namely, l and m—must be estimated from arrayCGH
data. We recall that l is the parameter of the exponential distri-
bution for generating deletions—that is, is the average length1

l

of a deletion—and that m is the parameter of the Poisson process
used for generating the breakpoints—that is, m is the mean num-
ber of breakpoints per unit length.

Recently, several statistically powerful algorithms have been
devised to analyze the arrayCGH data and to render the under-
lying genome in terms of segments of regions of similar copy
numbers. These algorithms readily yield an output that can be
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Table 2. Overlap between True Location and Estimated
Location of the TSG and the Resulting Sensitivity for the
Six Simulated Models

Average
Intermarker
Distance (kb)
and Model

Jaccard Measure Sensitivity

LR Max LR Max

10:
1 .82 � .11 .72 � .23 .80 � .08 .79 � .10
2 .84 � .12 .67 � .24 .69 � .10 .67 � .13
3 .84 � .10 .62 � .30 .56 � .11 .54 � .13
4 .74 � .15 .23 � .19 .80 � .14 .69 � .12
5 .73 � .16 .33 � .25 .69 � .12 .59 � .16
6 .74 � .17 .26 � .25 .54 � .12 .46 � .12

20:
1 .70 � .15 .44 � .27 .59 � .16 .56 � .16
2 .70 � .19 .38 � .30 .46 � .14 .43 � .15
3 .68 � .20 .43 � .30 .38 � .14 .34 � .16
4 .60 � .21 .25 � .21 .60 � .18 .55 � .15
5 .65 � .20 .24 � .22 .46 � .15 .40 � .14
6 .58 � .28 .27 � .28 .37 � .15 .33 � .14

NOTE.—LR and Max refer to the two methods used to estimate the
location of the TSG.

Figure 4. Box plots of the Jaccard measure of overlap for each
of the six models (table 1). Fifty data sets are simulated according
to each model, and the distribution of the resulting 50 overlap
measures is depicted in each box plot. Average intermarker dis-
tance is 10 kb. A, LR. B, Max.

interpreted as alternating segments of normal and abnormal seg-
ments, with the abnormal segments falling into two groups: seg-
mental losses and segmental gains. If these segments satisfy the
assumptions regarding the breakpoint and length distributions,
the desired parameters m and l can be estimated empirically from
the segmentation of the data. Certain Bayesian algorithms, such
as the one proposed by Daruwala et al.2 and its variants (T. S.
Anantharaman, M. Sobel, and B.M., unpublished data), include
these assumptions in their prior and are thus able to estimate
these parameters directly. The present algorithm builds on the
latter class of segmentation algorithms but is not limited by this
requirement.

In addition to estimating l and m, we also use the segmentation
of individual samples to obtain the positions of the breakpoints
(points where deletions start) in each sample and use these po-
sitions to assess the statistical significance of our results.

Estimating the Location of the TSG

The estimation procedure proceeds in a sequence of steps. In the
first step, the algorithm computes the scores ( ) for all theRRI deleted

intervals I, with lengths taking values in a range determined by
a lower and an upper bound, starting with small intervals con-
taining a few markers and ending with very long intervals. We
have evaluated two different statistical methods designed to es-
timate the location of the TSGs.

The first and the simplest method operates by simply choosing
the maximum-scoring interval as the candidate TSG; namely, it
selects the interval I with maximum in a genomic regionRRI deleted

of interest (e.g., a chromosome or a chromosomal arm) as the
most plausible location of a causative TSG. We refer to this
method as the “Max method.”

The other method functions by estimating the locations of the
left and the right boundaries of the TSG, with use of two scoring
functions, as described below. Two scores, and , are com-SL SRx x

puted for every marker position . The first value, , isx � [0,G] SLx

to be interpreted as the confidence that the point x is the left
boundary of a TSG; symmetrically, the latter, , is the confi-SRx

dence that the point x is the right boundary of a TSG. These
scores are defined more formally as

SL p RR ,�x I deleted
I�ILx

where is the set of intervals that are bounded by the markerILx

x from the left. Similarly,

SR p RR ,�x I deleted
I�IRx

where is the set of intervals with the right boundary exactlyIRx

at x.
Using these two scores, we can obtain an estimation of the true

position of the TSG as the interval , where, for the left (right)∗ ∗[x ,x ]L R

boundary, we choose the marker position ∗x p arg max SLL x x

( ) that maximizes the ( ) score. We refer∗x p arg max SR SL SRR x x x x

to this method as the “LR method.”

Significance Testing

Thus far, we have seen how to estimate the putative location of
a TSG either by maximizing the RR scores over many intervals
or by estimating other related scores that characterize the bound-
aries of the gene. Irrespective of which method is chosen, the
result is always an interval that consists of some number of mark-
ers; in the following, the computed interval is referred to as



www.ajhg.org The American Journal of Human Genetics Volume 79 July 2006 17

Figure 5. Box plots of the sensitivity measure for each of the
six models (table 1). Fifty data sets are simulated according to
each model, and the distribution of the resulting 50 sensitivity
measures is depicted in each box plot. Average intermarker dis-
tance is 10 kb. A, LR. B, Max.

Figure 6. Box plots of the Jaccard measure of overlap for each
of the six models (table 1). Fifty data sets are simulated according
to each model, and the distribution of the resulting 50 overlap
measures is depicted in each box plot. Average intermarker dis-
tance is 20 kb. A, LR. B, Max.

“ .” The final step of our algorithm determines whether thisImax

finding is statistically significant; that is, it assigns a P value to
.Imax

Unfortunately, there is no obvious or readily available approach
for analytically computing a P value for an interval . Therefore,Imax

the algorithm must rely on a different empirical method to com-
pute the statistical significance; namely, it computes the P value
from the observed distribution of breakpoints along the chro-
mosome (as given by the segmentation algorithm). It uses a null
hypothesis that no TSG resides on the chromosome; conse-
quently, the breakpoints can be expected to be uniformly dis-
tributed. Note that, if a detailed and complete understanding of
a genomewide distribution of breakpoints were available, then it
would pose little difficulty in changing the following discussions
and derivations mutatis mutandis. However, to avoid any un-
necessary biases in our estimators, we chose, for the time being,
to focus on an uninformative prior only, as reflected in our as-
sumptions. We may now note that if indeed is a TSG, thenImax

its neighborhood could be expected to contain an unusually large
number of breakpoints, thus signifying presence of a deviant re-
gion, which cannot be explained simply as random fluctuations
in the null distribution of breakpoints. Therefore, after counting
the number of breakpoints on the chromosome (N) and the num-
ber of breakpoints in the interval (k) across all samples, weImax

need to address the following question: how unusual is it to find
k breakpoints in a region of length , given the fact thatw p FI Fmax

there are N breakpoints uniformly distributed across the chro-

mosome? We answer this question using results from the theory
of scan statistics,3 as follows.

Let be the largest number of breakpoints in any interval ofSw

fixed length w (the interval contains a fixed number of markers).
This statistic is commonly referred to as the “scan statistic” and
provides the necessary tool for our computation. Using this new
notation, we answer the question we posed: namely, how likely
it is that we have k (of N) breakpoints in any interval of length

? The probability of this event is exactly .w p FI F P(S � k)max w

Wallenstein and Neff4 derived an approximation for ,P(S � k)w

using the following notations. Let

N k N�kb(k; N,w) p w (1 � w)( )k

and

N

G (k; N,w) p b(i; N,w) .�b
ipk

Then

�1P(S � k) ≈ (kw � N � 1)b(k; N,w) � 2G (k; N,w) , (4)w b

which is accurate when and remains so, even forP(S � k) ! 0.10w

larger values.
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Figure 7. Box plots of the sensitivity measure for each of the
six models (table 1). Fifty data sets are simulated according to
each model, and the distribution of the resulting 50 sensitivity
measures is depicted in each box plot. Average intermarker dis-
tance is 20 kb. A, LR. B, Max.

Figure 8. The histogram for the ratio values for all SNPs inlog2

all 70 tumors, together with an empirical null density fitted to the
histogram: .2ˆN(m,j )ˆ

Note that, for the above formula to be applicable, w must must
be a number between 0 and 1. Therefore, in our derivation below,
we use a normalized w, computed as the number of markers in
the interval divided by the total number of markers on theImax

chromosome.
To illustrate how this approximation of the P value performs,

in figure 2, we plot the calculated P values against different num-
bers of breakpoints k, while examining the effect of different
window sizes w. We used the following assumptions: the total
number of breakpoints is , , and 1N p 50 k � {1 … 20} w � { ,300

. (Thus, w is normalized as the number of mark-1 1 1 1 1, , , , }200 100 50 20 10
ers in the interval divided by the total number of markers on the
chromosome.)

Since the computation of P values in equation (4) depends on
the size of the interval w and since the size of thew p FI Fmax

interval (found either by the Max or LR method) might notImax

be the optimal length (e.g., because of underestimation of the
length of the TSG), we also examine intervals overlapping Imax

but of slightly different lengths and then compute a P value as
before. From the resulting P values, we choose the smallest (most
significant) value to measure the statistical significance. To ac-
count for the fact that multiple window sizes have been tested,
we apply a conservative Bonferroni adjustment for the P values
(we multiply the P values by the number of window sizes, and
we use windows with lengths of up to 10 markers in the analysis
of both simulated and real data).

Results

We applied our method to both simulated data and real
data. Below, we describe the data sources, data qualities,
and computed results, and we have relegated all the details
to the appendix (online only).

Simulated Data

We simulated data according to the generative process that
was described above. The simulation works on a growing
population of cells, starting with an individual normal cell
whose genome contains a single TSG at a known fixed
position. As the simulation proceeds, it introduces break-
points at different positions in the genome, each occurring
as a Poisson process with rate parameter m. At each of these
breakpoints, the simulation also postulates a deletion with
length distributed as an exponential random variable with
parameter l. Once, in some cell in the population, both
copies of the TSG become nonfunctional (either by homo-
zygous deletion or hemizygous deletion in the presence
of other mutations), the resulting precancerous cell in the
simulation starts to multiply indefinitely. Over time, the
new progenitor cells also incur other independent “col-
lateral damages” (i.e., deletions). Finally, the simulator ran-
domly samples the population for tumor cells, mimicking
the microdissection process used by a physician and, thus,
assuming that the collected sample exhibits a composition
of different tumor cells and some normal cells as well. In
our simulations, we assumed that even the normal cells
have some random deletions, whereas the different tumor
cells all come from the same ancestral precancerous cell
(fig. 3).

In all our simulations, we fixed the parameters, as listed
below.

umber of diseased individuals.N p 50 p n
Mb p length of the chromosome.G p 100

or otal number of probesP p 10,000 P p 5,000 p t
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Table 3. Significant Deleted Regions in the Lung Cancer Data Set

Chromosome
Exact Interval

(Mb) Commentsa

1p13.2 113.76–113.77 MAGI3 maps to this regionb

3p25.1 13.51–13.56 HDAC11 maps to this regionc

3q25.1 151.16–151.16 Homozygous deletions in this region have been found using this data set5

4q34.1 173.46–173.46 Deletions in this region have been reported in lung cancer8,9

5q14.1 79.16–79.18
5q21.3 106.95–107.0 This region is known to be frequently deleted in lung cancer10

6q14.1 78.50–79.02
7p15.3 20.48–20.49
9p23 10.02–10.05 Homozygous deletions in this regiond have been found using this data set5

9p21 32.85–32.85 Deletions in this region have been reported in lung cancer
10p13 17.17–17.20
10q24.1 97.83–97.94 BLNK maps to this regione

11p15.4 4.9–5.0 Deletions in this region have been found in several cancers11

12q14 66.28–66.29
14q11.2 20–20.1 Loss of heterozygosity in this regionf has been reported in lung cancer12

16q24 82.8–82.8 CDH13, known TSG, is deleted in lung cancer
17q21 39.5–39.6 HDAC5 maps to this regiong

19p13.3 .34–2 LKB1 is deleted in lung cancer13

20p12 8.7–8.8 PLCB1 maps to this regionh

21q21.2 23.27–23.38 This region has been found deleted in lung cancer15

a For more information, see the National Center for Biotechnology Information Human Genome Resources
Web site.

b PTEN/MMAC and MAGI3 cooperate to modulate the kinase activity of AKT/PKB involved in the inhibition
of apoptosis.6

c Frequent allelic losses have been reported in this region in lung and other solid tumors. Also, in vitro
studies suggest that this region is able to suppress growth of tumor cells.7

d This region is upstream of PTPRD (protein tyrosine phophatase, receptor type D), the gene currently being
investigated for its potential implications in lung cancer.5

e BLNK is a putative TSG.
f APEX1 maps to this region; this gene is implicated in the DNA repair mechanism and in control of cell

growth.
g HDAC5 plays a critical role in transcriptional regulation, cell-cycle progression, and developmental events.
h This gene is important in the control of cell growth; it may be of interest in cancer.14

(with the implication of average resolutions of 10 kb
and 20 kb, respectively).

otal number of cells per tumor sample, withC p 100 p t
tumor cells and normal cells.70% 30%

ean number of breakpoints per cell. (ThismG p 2 p m
value corresponds to the background deletions that
occur after the TSG becomes nonfunctional.)

kb p mean length of a deletion.1 p 50l

TSG . (TSG is represented by anp [10.0 Mb,10.1 Mb]
interval starting at 10.0 Mb and has a length of 100
kb.)

To the resulting copy numbers, we added an independent
Gaussian noise, . The simulated data were seg-2∼ N(0,0.1 )
mented using the publicly available software described by
Daruwala et al.2 (NYU Versatile MAP Segmenter). A seg-
ment was called “deleted” if of the segmental:meanlog2

ratio (test:normal) for that segment was less than a thresh-
old value of .1log ( ) � 1.02 2

Table 1 shows the different simulated scenarios we used.
They all share the same set of parameters as described
above, with an additional complexity to reflect differences
in the composition of the starting population: some sam-
ples are assumed to be diseased because of mutations in
the TSG ( ), and some samples are spo-p � phomozygous hemizygous

radic ( ). Among the samples with mutations in thepsporadic

TSG, some have only homozygous deletions ( ),phomozygous

and some have only hemizygous deletion of the TSG
( ). Furthermore, the sporadic samples are assumedphemizygous

not to have deletions in the TSG under investigation; that
is, they have only background deletions.

Performance Measure.—The performance of our method
was evaluated by the Jaccard measure of overlap between
the estimated position of the TSG and the real position
used in the simulation. Note that, if E is the estimated
interval and T is the true one, then the Jaccard measure
is defined simply as

FE ∩ TF
J(E,T) p ,

FE ∪ TF

where is the length of the interval common toFE ∩ TF
both—that is, the interval .E ∩ T

We also tested the capacity of the inferred TSG as a
possible biomarker for cancer detection or classification.
More precisely, we measured, for a postulated TSG, its sen-
sitivity, which is defined as the percentage of diseased sam-
ples that have the estimated TSG deleted. For models 4–
6, which also contain sporadic samples, we considered, in
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our calculation of sensitivity, only the more meaningful
situations, consisting only of samples that are diseased
because of mutations in the TSG under investigation.

Table 2 presents our results, with a summary of overlap
and sensitivity measures for each of the six models out-
lined above and for the two marker resolutions simulated,
10 kb and 20 kb. The numbers that appear in the table
are, after averaging over 50 data sets, simulated under the
corresponding models. In all cases, the estimated P value
is very small (!.001).

To present a better understanding of the entire distribu-
tion of scores, we also plotted box plots for the Jaccard
measure and for the sensitivity measure for all the simu-
lated scenarios (see figs. 4–7).

Real Data

Real data from patients with cancer or from cancer cell
lines, when examined with an available array technology,
may contain other sources of error that may be correlated
or may be nonstationary in a complicated manner that
can never be modeled in the simulation; effects difficult
to model include degradation of genomic DNA, base-com-
position–dependent PCR amplification in complexity re-
duction, presence of hypermutational regions, incorrect
probes resulting from errors in reference genome assem-
bly, contamination, crosshybridization, and myriad others.
Consequently, we cannot obtain full confidence in our
methodologies, even though the results of the analysis of
the simulated data were found to be very encouraging and
even though the analysis showed that, in those ideal con-
ditions underlying the simulation, our algorithm was able
to detect, with high accuracy and confidence, the location
of the simulated TSG.

In this section, we inspect the results of our method
when applied to a real data set for lung cancer, which was
originally published by Zhao et al.5 Seventy primary hu-
man lung-carcinoma specimens were used in our analysis.
For each sample, copy-number changes at ∼115,000 SNP
loci throughout the genome were measured and recorded.
We used an unpublished Affy normalization and summari-
zation software (T. S. Anantharaman, S. Paxia, and B.M.,
unpublished data) to convert the raw data into genotypic
copy-number values. Next, as for the simulated data, we
applied the segmentation algorithm2 to the raw signallog2

ratio (test:normal) data and obtained a partition of the
data into segments of probes with the same estimated
mean. Since the previous steps were found to average out
the random noises across groups of probe sets and neigh-
boring probes, variance parameters were quite low and
were discarded from further analysis. For this data set, we
next determined that a chromosomal segment could be
treated as deleted if the segment had an inferred ratiolog2

less than a threshold value of �1.0. Figure 8 depicts the
histogram for the ratio values for all SNPs in all 70log2

tumors, together with an empirical null density fitted to
the histogram . The overall threshold is defined as2ˆˆN(m ,j )0 0

. (The appendix [online only] provides fur-ˆm̂ � 2j p �1.00 0

ther details about the computation of this cutoff threshold.)
The significant regions (genomewide significance level

) are presented in table 3. The intervals reported were! .01
computed using the Max method. Most of the detected
regions have been reported elsewhere as deleted in lung
cancer (e.g., 5q21 and 14q11). Most significantly, some of
the found intervals overlap some good candidate genes
that may play a role in lung cancer (e.g., MAGI3, HDAC11,
and PLCB1). Also, Zhao et al.5 found, for the first time,
that regions 3q25 and 9p23 were homozygously deleted.

Discussion

The focus of this work has been a novel statistical method
and its application to the problem of estimating the lo-
cation of TSGs from arrayCGH data characterizing seg-
mental deletions in cancer genomes. The underlying al-
gorithm computes a multipoint score for all intervals of
consecutive probes. The computed score measures how
likely it is for a particular genomic interval to be a TSG
implicated in the disease. We propose two ways to esti-
mate the location, the LR method and the Max method.
In our experience, both methods perform well, with the
LR method being more accurate than the Max method in
the simulation experiments, especially when the marker
density is relatively high (i.e., �100,000 probes spanning
the human genome). However, with the real data, we found
that the Max method gives better intervals, because of the
increased noise.

We evaluated the efficacy of our method by applying it
to both simulated data and real data, and we concluded
that the results are significant. In the ideal conditions, as
in our simulations, our estimation method seems to per-
form exceedingly well. In particular, with an average in-
termarker distance of 10–20 kb, the overlap between the
estimated position and the true position of the TSG is
150%. Although the simulations are only an attempt to
approximate the real data, the results obtained show that
our method is reliable in pinpointing the location of pu-
tative TSGs. In addition, we also applied our method to a
real data set for lung cancer. We obtained many regions
that were reported elsewhere as deleted in lung cancer.
Most significantly, the intervals within the regions 3p25,
16q24, 19p13, and 20p12 overlap some good candidate
genes (HDAC11, CDH13, LKB1, and PLCB1, respectively)
that could play an important role in lung cancer. Several
other regions have also been known to harbor deletions
in patients with lung cancer. In addition, we detected a
few regions, unreported elsewhere, that warrant more-de-
tailed examination to understand their relation to lung
cancer—for example, 6q14 and 7p15.

We note that, in comparative experimental settings such
as those used by arrayCGH, one needs to keep track of
the meaning of “normal genomes,” since there are at least
three kinds of “normal” genomes involved in this anal-
ysis—namely, the normal genome (or genomes) used in



www.ajhg.org The American Journal of Human Genetics Volume 79 July 2006 21

designing the arrayCGH (or SNP) chips, the genomes from
a population with similar distribution of polymorphisms
(both SNPs and copy-number polymorphisms [CNPs]) as
the patient under study, and, finally, the genome from a
normal cell in the same patient. The simplest situation,
in terms of statistical analysis, is when the normal genome
is the one from a normal cell from the same patient; this
is at the basis of the analysis we presented here. The other
information can be augmented in preprocessing or post-
processing steps, when the situation differs from this sim-
plest one. Also, our scoring functions and the algorithm
can be suitably modified if it is deemed necessary that the
polymorphisms in the probes and the population must be
tracked. Other similar, but not insurmountable, compli-
cations would arise, if one were to also model the “field
effects” in the normal genomes from the patient.

We also note that this study highlights only the appli-
cation to estimating the positions of TSGs. However, the
estimation for oncogenes requires only minor modifica-
tions to the score function and to the estimation method,
since, for an oncogene, the mutation (i.e., amplification)
is dominant and requires the entire gene to be amplified,
whereas, for TSGs, the mutation is recessive, and it suffices
for any functional portion of the gene to be deleted for
its inactivation.

In summary, we formulated a general approach that is
likely to apply to other problems in genetics if a suitable
generative model and an accompanying score function can
be accurately formulated; the rest of the method works out
mutatis mutandis. Unlike the classic approach, normally
employed in most genetics studies, the proposed approach
does not employ a locus-by-locus analysis and thus does
not depend on linkages between a marker and genes that
harbor causative mutations. The present algorithm exploits
the fact that, when genomewide high-density markers are
studied, as with whole-genome arrays, one could look for
the interesting genes directly by examining every plau-
sible genomic interval delineated by a group of consecu-
tive markers. Such an interval-based analysis is more in-
formative and allows assignment of significance values to
estimated intervals with use of scan statistics. We note that
there have been other uses of scan statistics for genetics
in different contexts, such as the work of Hoh and Ott.16

We also note that many variants of our method can be
further enriched by augmenting other auxiliary informa-
tion to the interval: underlying base compositions (e.g.,
GC content, Gibbs-free energy, and codon bias) in the ge-
nomic interval, known polymorphisms (e.g., SNPs and
CNPs), genes and regulatory elements, structures of hap-
lotype blocks, recombination hot spots, etc. Note, how-
ever, that, at present, in the absence of reliable and com-
plete statistical understanding of these variables, it is safe
to work only with uninformative and simple priors of the
kind we have already incorporated in our algorithm.

Nonetheless, the utility of our algorithm will most likely
be first validated with the simplest forms of arrayCGH data
and in the context of cancer, an area currently under in-

tense study. We will gain more confidence as these meth-
ods are used for bigger data sets, for larger number of pa-
tients, and for many different cancers. There are few com-
peting methods that bear some minor resemblance to our
algorithm. For instance, the STAC method (Significance
Testing for Aberrant Copy-Number [STAC] Web site) also
finds gene intervals from arrayCGH data, but it does not
employ any generative model to compute a score to be
optimized, nor does it compute a statistical significance
on the basis of such a model. (It uses a permutation ap-
proach to create a null-hypothesis model). A detailed com-
parison will indicate how much statistical power is gained
when a more faithful but parsimonious generative model
is used.

We recognize that a lot more remains to be done to
completely realize all the potential of the proposed anal-
ysis. There may be more-subtle correlations between the
intervals we detect, and such correlations (or anticorre-
lations) may hint at subtle mechanisms in play in cancer
progression. If various regions of a polyclonal tumor can
be analyzed separately, the distribution of important in-
tervals may reveal many more details of the disease. There
may be a critical need to stratify the patients into sub-
groups and to analyze them separately to detect more-
subtle patterns. Once an important interval is detected
(e.g., corresponding to a putative TSG), one may wish to
understand how the deleted intervals affecting the genes
are spatially distributed. Such higher-order patterns and
motifs may paint a better picture about many varied ge-
nomic mechanisms responsible for the initiation and de-
velopment of a cancer.
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